Subject Name: Translator Design

Subject Code: 4TE07TDE1
Branch: B.Tech (CE)
Semester: 7 Date: 28/03/2018
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a) What is cross compiler?
b) Define parse tree.
c) Compare top down parser with bottom up parser.
d) Enlist proprieties of three address code.
e) Explain the task of loader in brief.
f) Write a regular expression for the set of strings of 0 's and 1 's not containing 101 as a substring.
g) What is peephole optimization?
h) Enlist any three issues in the design of code generation.
i) Define annotated parse tree.
j) What is handle?
k) Define operator precedence grammar.
l) What is Lex and YACC?
m) What is DAG? Draw a DAG for $\mathrm{a}+(\mathrm{b}-\mathrm{c})^{*} \mathrm{~d}+(\mathrm{b}-\mathrm{c}) * \mathrm{~d}$
n) Define synthesized attribute.

Attempt any four questions from $\mathbf{Q - 2}$ to $\mathbf{Q - 8}$

Q-2 Attempt all questions

(a) Explain various storage allocation strategies in brief.
(b) Parse the string $\mathrm{id}_{1}+\mathrm{id}_{2} * \mathrm{id}_{3} \#$ using shift reduce parser.
(c) Write syntax directed definition for constructing a syntax tree for the arithmetic expression including,+- and / operators.
Q-3 Attempt all questions
(a) Construct NFA using Thompson's notation for following regular expression and convert it into DFA. $\quad\left(a^{*} \mid b^{*}\right) b a^{*} \#$
(b) Explain error recovery strategies in parser.
(c) What is an ambiguous grammar? Explain with suitable example.

Attempt all questions
(a) Construct DFA for following regular expression without constructing NFA and minimize it. $\quad a^{+} b(c \mid d) a^{*} b \#$
(b) Define token, pattern and lexeme.
(c) Find $\mathrm{LR}(1)$ items for following grammar.
$\mathrm{S} \rightarrow \mathrm{Aa|aAc|Bc\mid bBa}$
$\mathrm{A} \rightarrow \mathrm{d}$
B \rightarrow d
Q-5 Attempt all questions
(a) Explain activation record in brief.
(b) Construct a predictive parser for the grammar
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow \mathrm{F}^{\prime}|(\mathrm{E})| 0 \mid 1$
(c) What is left factoring? Explain it with suitable example.

Q-6 Attempt all questions
(a) Write three address codes for following expression and generate final code by clearly (07) showing register descriptors and address descriptors. $x=a *(b-c)-d /(e+-f)$
(b) Find $\operatorname{LR}(0)$ items for following grammar and construct SLR parsing table.
$\mathrm{S} \rightarrow \mathrm{AaAb}$
$\mathrm{S} \rightarrow \mathrm{B}$ b B a
$\mathrm{A} \rightarrow \in$
$B \rightarrow \in$
Q-7 Attempt all questions
(a) List the tasks performed by each pass of a two pass assembler. Also explain given directives for an assembler: ASSUME, EQU, EXTERN, ORIGIN
(b) Explain principle sources of Code optimization in detail.

Q-8

Attempt all questions
(a) What is nested macro? Explain with suitable example.
(b) List the major steps of relocation and linking algorithms. Explain in brief.

